Specific phosphorylation of Torpedo 43K rapsyn by endogenous kinase(s) with thiamine triphosphate as the phosphate donor.

نویسندگان

  • H O Nghiêm
  • L Bettendorff
  • J P Changeux
چکیده

43K rapsyn is a peripheral protein specifically associated with the nicotinic acetylcholine receptor (nAChR) present in the postsynaptic membrane of the neuromuscular junction and of the electrocyte, and is essential for its clustering. Here, we demonstrate a novel specific phosphorylation of 43K rapsyn by endogenous protein kinase(s) present in Torpedo electrocyte nAChR-rich membranes and identify thiamine triphosphate (TTP) as the phosphate donor. In the presence of Mg(2+) and [gamma-(32)P]-TTP, 43K rapsyn is specifically phosphorylated with a (32)P-half-maximal incorporation at approximately 5-25 microM TTP. The presence of TTP in the cytosol and of 43K rapsyn at the cytoplasmic face of the postsynaptic membrane, together with TTP-dependent phosphorylation of 43K rapsyn without added exokinases, suggests that TTP-dependent-43K-rapsyn phosphorylation may occur in vivo. In addition, phosphoamino acid and chemical stability analysis suggests that the residues phosphorylated are predominantly histidines. Inhibition of phosphorylation by Zn(2+) suggests a possible control of 43K rapsyn phosphorylation state by its zinc finger domain. Endogenous kinase(s) present in rodent brain membranes can also use [gamma-(32)P]-TTP as a phosphodonor. The use of a phosphodonor (TTP) belonging to the thiamine family but not to the classical (ATP, GTP) purine triphosphate family represents a novel phosphorylation pathway possibly important for synaptic proteins.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phosphorylation of Staphylococcus aureus Protein-Tyrosine Kinase Affects the Function of Glucokinase and Biofilm Formation

Background: When Staphylococcus aureus is grown in the presence of high concentration of external glucose, this sugar is phosphorylated by glucokinase (glkA) to form glucose-6-phosphate. This product subsequently enters into anabolic phase, which favors biofilm formation. The presence of ROK (repressor protein, open reading frame, sugar kinase) motif, phosphate-1 and -2 sites, and tyrosine kina...

متن کامل

Agrin-induced activation of acetylcholine receptor-bound Src family kinases requires Rapsyn and correlates with acetylcholine receptor clustering.

During neuromuscular synaptogenesis, neurally released agrin induces aggregation and tyrosine phosphorylation of acetylcholine receptors (AChRs) by acting through both the receptor tyrosine kinase MuSK (muscle-specific kinase) and the AChR-associated protein, rapsyn. To elucidate this signaling mechanism, we examined tyrosine phosphorylation of AChR-associated proteins, particularly addressing ...

متن کامل

Rapsyn Clusters and Activates the Synapse-Specific Receptor Tyrosine Kinase MuSK

Nerve-induced clustering of the nicotinic acetylcholine receptor (AChR) requires rapsyn, a synaptic peripheral membrane protein, as well as protein-tyrosine kinase activity. Here, we show that rapsyn induces the clustering of the synapse-specific receptor-tyrosine kinase MuSK in transfected QT-6 fibroblasts. Furthermore, rapsyn stimulates the autophosphorylation of MuSK, leading to a subsequent...

متن کامل

The myristoylated protein rapsyn is cotargeted with the nicotinic acetylcholine receptor to the postsynaptic membrane via the exocytic pathway.

Rapsyn, a 43 kDa protein required to cluster nicotinic acetylcholine receptors (AChRs) at the neuromuscular junction, is tightly associated with the postsynaptic membrane via an N-terminal myristoylated site. Recent studies have shown that some acylated proteins associate with the exocytic pathway to become targeted to their correct destination. In this work, we used Torpedo electrocyte to inve...

متن کامل

The mammalian 43-kD acetylcholine receptor-associated protein (RAPsyn) is expressed in some nonmuscle cells

Torpedo electric organ and vertebrate neuromuscular junctions contain the receptor-associated protein of the synapse (RAPsyn) (previously referred to as the 43K protein), a nonactin, 43,000-Mr peripheral membrane protein associated with the cytoplasmic face of postsynaptic membranes at areas of high nicotinic acetylcholine receptor (AChR) density. Although not directly demonstrated, several lin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • FASEB journal : official publication of the Federation of American Societies for Experimental Biology

دوره 14 3  شماره 

صفحات  -

تاریخ انتشار 2000